Example 1: Draw the Lewis structure for a phosphorus tribromide Step 4: Pair-up remaining electrons on central atom. molecule. $\ddot{B}r - P - \ddot{B}r$ **PBr**₃ :Br: The two remaining electrons are paired up on the phosphorus atom. Step 1: Count the valence electrons. Step 5: Reassign outer lone pair to bonding position if needed to obtain octet for central atom (creates multiple bond). The phosphorus atoms has 5 valence electrons, and :Br−P−Br: each bromine atom has 7 valence electrons. 5 + 3(7) = 26 valence electrons The phosphorus atom is surrounded by 8 electrons (3 bonding pairs and 1 lone pair). Step 2: Bond outer atoms to central atom (2 e⁻ per bond). Step 6: Assign formal charges. The phosphorus atom "owns" 5 electrons (one in Br-P-Br each of the three bonds and the lone pair). Since a neutral phosphorus atom has 5 valence electrons, there is no formal charge on the phosphorus atom. Each bromine atom "owns" 7 electrons (three lone pairs plus one in the bond). Since neutral bromine 6 electrons used (20 electrons remaining) atoms have 7 valence electrons, there are no formal charges on the bromine atoms. Step 3: Fill octets of outer atoms (duet for hydrogen). Step 7: Reduce formal charges if possible. $\operatorname{Br} - \operatorname{P} - \operatorname{Br}$ There are no formal charges to reduce. The final structure is: $\ddot{B}r - \ddot{P} - Br$ 24 electrons used (2 electrons remaining)

EXAMPLES FOR DRAWING LEWIS STRUCTURES (see section 4.1 in the textbook for more details and examples)

Example 2: Draw the Lewis structure for a formaldehyde molecule .	Step 4: Pair-up remaining electrons on central atom.
CH ₂ O	$\begin{array}{c} H - C - H \\ I \\ \vdots \\ \vdots \\ \end{array}$ There are no electrons remaining to put on central atom.
Step 1: Count the valence electrons. The carbon atom has 4 valence electrons, each hydrogen atom has 1 valence electron, and the oxygen has 6 valence electrons. 4 + 2(1) + 6 = 12 valence electrons	Step 5: Reassign outer lone pair to bonding position if needed to obtain octet for central atom (creates multiple bond). H - C - H II :Q The carbon atom is surrounded by only 6 electrons (3 bonding pairs). One of the lone pairs on the oxygen atom must be reassigned as a second bond between oxygen and carbon.
Step 2: Bond outer atoms to central atom (2 e ⁻ per bond). H-C-H O 6 electrons used (6 electrons remaining)	Step 6: Assign formal charges. The carbon atom "owns" 4 electrons (one from each bond). Since a neutral carbon atom has 4 valence electrons, there is no formal charge on the carbon atom. The oxygen atom "owns" 6 electrons (one from each bond plus the two lone pairs). Since a neutral oxygen atom has 6 valence electrons, there is no formal charge on the oxygen atom. Hydrogen atoms never have a formal charge.
Step 3: Fill octets of outer atoms (duet for hydrogen). H - C - H I 12 electrons used (O electrons remaining)	Step 7: Reduce formal charges if possible. There are no formal charges to reduce. The final structure is: H - C - H II :O :O

Example 3: Draw the Lewis structure for a nitrite ion .	Step 4: Pair-up remaining electrons on central atom.
NO_2^-	∴Ö — Ň — Ö: The two remaining electrons are paired up on the
	nitrogen atom.
Step 1: Count the valence electrons.	Step 5: Reassign outer lone pair to bonding position if needed to obtain octet for central atom (creates multiple bond).
The nitrogen atom has 5 valence electrons, and each oxygen atom has 6 valence electrons. One more electron must be added to account for the 1-	;ö=n−ö;
charge. 5 + 2(6) + 1 = 18 valence electrons	The nitrogen atom is surrounded by only 6 electrons (2 bonding pairs and one lone pair). One of the lone pairs on an oxygen atom must be reassigned as a second bond between an oxygen and the nitrogen.
Step 2: Bond outer atoms to central atom (2 e^- per bond).	Step 6: Assign formal charges.
0 — N — O	·Ö=Ň-Ö:
4 electrons used (14 electrons remaining)	The oxygen on the right "owns" 7 electrons (one from the bond and 3 lone pairs). Since a neutral oxygen atom has only 6 valence electrons, there is a formal charge of 1- on the oxygen atom.
Step 3: Fill octets of outer atoms (duet for hydrogen).	Step 7: Reduce formal charges if possible.
₩Ö−N−Ö	The formal charge cannot be reduced. The final structure is:
16 electrons used (2 electrons remaining)	;ö=n-ö;

Example 5: Draw the Lewis structure for a chlorous acid molecule.	Step 4: Pair-up remaining electrons on central atom.
HCIO ₂	₩ The 4 remaining electrons are paired up on the chlorine atom.
Step 1: Count the valence electrons. The hydrogen atom has 1 valence electron, the chlorine atom has 7 valence electrons, and each oxygen atom has 6 valence electrons. 1 + 7 + 2(6) = 20 valence electrons	Step 5: Reassign outer lone pair to bonding position if needed to obtain octet for central atom (creates multiple bond). The chlorine atom is surrounded by 8 electrons (2 bonding pairs and 2 lone pairs).
Step 2: Bond outer atoms to central atom (2 e ⁻ per bond). O-CI-O-H Note that in oxoacids (HNO ₃ , H ₂ SO ₄ , etc) the hydrogen atoms are bonded to oxygen atoms rather than the central atom. 6 electrons used (14 electrons remaining)	Step 6: Assign formal charges.
Step 3: Fill octets of outer atoms (duet for hydrogen). $\dot{\mathbf{c}} - \mathbf{c} - \dot{\mathbf{c}} - \mathbf{H}$ 16 electrons used (4 electrons remaining)	Step 7: Reduce formal charges if possible. :O = C = O = H If one of the lone pairs on the oxygen atom is reassigned as a second bond between the oxygen and the chlorine then the formal charges are eliminated. The chlorine atom has an "expanded octet."